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SUM_RY

Expressions based on linearized supersonic-flow theory are derived

for the perturbation velocity potential in space due to wing thickness

for rectangular wings with biconvex airfoil sections and for arrow,

delta, and quadrilateral wings with wedge-type airfoil sections. The

complete range of supersonic speeds is considered subject to a minor

aspect-ratio--Mach number restriction for the rectangular plan form and

to the condition that the trailing edge is supersonic for the sweptback

wings. The formulas presented can be utilized in determining the

induced-flow characteristics at any point in the field and are readily

adaptable for either numerical computation or analytical determination

of any velocity components desired.

INTRODUCTION

The increasing use of auxiliary bodies such as stores and missiles

on current aircraft has emphasized the need for reliable methods and

procedures for predicting the load distribution, forces, and moments

generated by such bodies and also the aerodynamic effects induced on

these bodies by neighboring airplane components. The total loading

and forces acting on stores_ missiles, pylons, and so forth are required

in order to design supporting structures_ to predict the performance

and stability characteristics of aircraft, to determine the jettison

characteristics of stores, and to compute the trajectories of missiles

when fired from parent aircraft.

Although considerable effort has been expended in the past in cal-

culating the load distribution_ forces, and moments acting on isolated

aircraft components for the supersonic speed regime (e.g., refs. i to 3

and reports cited therein), somewhat less attention has been focused

on the equally important problem of determining the aerodynamic effects

induced by one body on neighboring airplane components. (See refs. 4



to 6 and reports mentioned therein.) The problem of determining the
flow fields arising from airplane componentsundergoing various motions
becomesa prime consideration in calculating induced aerodynamic effects.
Somerecent work pertaining to the calculation of flow fields at super-
sonic speeds maybe found in references 7 to 9. In general, the avail-
able literature covers in adequate detail the flow fields arising from
flat wings at an angle of attack and flat wings undergoing steady
rolling or steady pitching motions.

The present paper concerns itself with the linearized-theory evalu-
ation of the effect of wing thickness and thickness distribution on the
flow fields generated by thin wings at zerc angle of attack. The pur-
pose is to present closed-form expressions for the perturbation velocity
potential which in turn maybe utilized to calculate by either numerical
or analytical procedures the desired flow-fleld velocities and angular-
ities. Wings of rectangular plan form with symmetrical biconvex profile
and of delta and modified-delta plan forms with wedge-type airfoil sec-
tions are treated in detail. The complete range of supersonic speeds
is considered subject to a minor aspect-ratio--Mach numberrestriction
for the rectangular wing and to the condition that the trailing edge is
supersonic for the sweptback wings.

SYMBOLS

zB

_,_

V

M

.¢Ix

A

rectangular coordinates ¢f field points

nondimensional rectangulsr coordinates defined as

x_ Y z
Cr' b--_' and b-7_, respectively

z-coordinate defining airfoil section

rectangular coordinates cf source points

free-stream or flight velocity

Mach number

Mach number parameter, _._ - i

perturbation velocity potential

specific evaluations of pertubation velocity potential

sweepback angle of leadirg edge



3

m

c r

b

S

A

x

t

c

)x

FI,F 2, • . .F 6

GI,G 2, •..GI4

_a' _b' " ""_f

sweepback-Mach number parameter, _ cot A

inclination of wing trailing edge, measured relative

to root-chord extended (see fig. 2)

root chord of wing

wing span

area of wing plan form

wing aspect ratio, b2/S

aspect-ratio_Mach number parameter, A_

maximum thickness of local airfoil section

local wing chord

slope of wing surface_ measured in stream direction

functions that are given in appendix A for purposes

of evaluating perturbation velocity potential for

sweptback wing cases

functions that are given in appendix B for purposes

of evaluating perturbation velocity potential for

rectangular wing cases

specific values of variable _ corresponding to

various locations where Mach forecone from field

point (x,y,z) intersects leading and trailing edges

of wing (see fig. 3)

ANALYSIS

The analysis is based on supersonic thin-airfoil theory and on the

assumptions of small disturbances and a constant velocity of sound

throughout the fluid. These assumptions lead to the linearized equa-

tion for the perturbation velocity potential _:

(i- M2)¢ + + : 0 (1)
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where M is the Mach number of the flow, and the derivatives are taken

with respect to the variables x_ y, and z of the rectangular coor-

dinate system. The general expression for the linearized perturbation

velocity potential in space due to a distribution of source and sink

singularities in the z = 0 plane is (see refs. i0 and ii)

+ z2]

where x, y, and z are the rectangular coordinates of the field point

at which the potential is desired, and _ and _ are the rectangular

coordinates (analogous to x and y) of the singularities. The func-

tion k(_,_) represents the particular di_;tribution of singularities

for the wing under consideration and is thus, of course, dependent upon

the boundary conditions imposed. For wing-thickness distributions that

are amenable to thin-airfoll-theory calculations, the source-sink dis-

tribution function is related to the particular thickness distribution

involved and is given as

h(_,_) = [_ ZB(_,_]]ZB=O

(3)

The integration indicated in equation (2) is performed over the region R

that is enclosed by the traces in the z = 0 plane of the Mach forecone

emanating from the point (x,y,z) and by th_ wing plan-formboundaries.

(See fig. 1.) For purposes of convenience: the Mach number parameter

= _M 2 - ! rather than M itself will _ e used in the expressions to

be developed; equation (2) may then be re_uitten in the more familiar

form

P_

_(x_y,z) - V// },(_3_]',d_ d_
• (4)JJ - _ _ _  2z2

In order to obtain closed-form expressions for the potential func-

tion _(x,y,z), it is necessary to define the slope function h(_,q)

for the particular wing under consideration (see eq. (5)) and then to

integrate over the appropriate region R. _he present paper considers
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delta and modified-delta wings with wedge airfoil sections and rectan-

gular wings with symmetrical biconvex airfoil sections. (See fig. 2.)

For the sweptback wings, the equation for the upper surface is given by

z =tx (5)
2c

where x is measured positive rearward from the y-axis. (See fig. 3-)

The slope function h(_,_) is, of course, constant for the sweptback

wings and is given by

h- t (6)
2c

For the rectangular wings, the equation for the upper surface may

readily be derived as

z = 2t X(IC _ x) (7)

where x is measured positive rearward from the leading edge. The

slope function h(_,_), which for the rectangular wings is independent

of _, is found to be

(8)

In order to determine the appropriate regions of integration, the

sweptback wings have been subdivided into nine cases (see fig. 4), each

case being characterized by distinct Mach tracemplan-form-boundary

intersections. In an analogous manner, the rectangular wings have been

subdivided into eight cases (see fig. 5). Thus, if the perturbation

velocity potential is desired at an arbitrary point (x,y,z), the Mach

trace must be determined and then the appropriate integration performed

in accordance with equation (4). The sketches given in figures 4 and 5

cover all possible cases that are required to determine completely the

potential function for the wings under consideration. Note that the

only restriction applicable to the sweptback wings is that the trailing

edge is supersonic; for the rectangular wings, the side edges may not

interact (expressed mathematically by the condition A_ _ i). (See

fig. 2.) It is of interest to point out that cases VII, VIII, and IX

for the sweptback wings can occur only when the wing has a supersonic

leading edge.
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In order to define mathematically tfe required regions of integra-

tion_ the _ coordinate of the point of intersection between the Maeh

forecone _ = x - _(y - _)2 + z2 and each plan-form boundary must be

obtained. The specific intersection points are indicated by the filled-

in circles shown in figure 3, and the associated _ values are readily

found by simple algebraic processes to bc

_a = cot A []XL- \#( )I
w___c_t2^ _ _2y cot A + _ _x cot A + y)2 + z2(l - _2cot2 Ai

(9)

F
Nc = tan.8_ ]x-

132tan25 - 1 I_

cot A Ix _ _2y cot A _ _(x cct A _ y)2 + z2(l _ _2cot2A) 1
i - _2cot2A

(i0)

2
Cr + _2y tan 5 - _ x - Or)tan 5 + + z2(1 - _2tan25

(ii)

+ z2(l - _2tan25_

(12)

Ictan 5 2
r -x+_2Y tan 5- _ x- Cr)tan 5- + z2(l- _2tan25

_2tan25- i

Bd .... r-X+_2Y tan 5+ _ X-Cr)tan 5-

_2tan25 - i

_e =

(13)

Bf =
cotA [

i - _2cot2A Lx - 132y cot A + 13_x oct A - y)2
+ z2(l - _2cot2A)]

(14)

For the rectangular wing (A = 0° anl 5 = 90o), Be and Bf are

the same as Nc and Na' respectively_ and considerable simplification

results in equations (9) to (12). The simplified expressions for _a

to Bd are as follows:
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_d =

_y- Vx 2 - _2z2

_y + _x 2 - _2z2

_y_ V( x_ c)2_ _2z2

(15)

(16)

(17)

(18)

The integral expressions for the perturbation velocity potential

corresponding to the nine cases for the sweptback wing (see fig. 4) and

the eight cases for the rectangular wing (see fig. 5) may now be explic-

itly determined. For purposes of convenience appendixes A and B present

for the sweptback wings and rectangular wings, respectively, the various

conditions associated with each potential function as well as the spe-

cific formulas (F and G functions) required to define the potential.

The following equations result for the nine sweptback-wing cases,

where the slope _ is constant and defined by equation (6):

Case I:

Case II:

 z(x,y,z)
V_ b/2

- F 1 (19)

¢-r-r(x,y,z)
Vk b/2 = FI + F2

(20)

Case III:

¢III(X,Y, z)

v_ b/2
= F I + F2 + F3 (21)

Case IV:

_IV(X,Y, z)
(22)

v_ b/2 : Fz + F3 - F5



Case V :

_(x,y,z)

v_ b/2
- I;1 - F5

Case Vl :

_vI(x,y,z)
VA b/2

= FI + F 2 + F 5 + F 4

Case VII:

_ii(x,y,z)
V_ b/2

= F 5 - F 5 + F 6

Case VIII:

_vIii(x,y,z)
- _ b/2 = F6 - F5

Case IX:

¢IX(x,y,z)
b/2

= F6

For the eight rectangular-wing cases, the following formulas

result:

Case I:

Case II:

Case III:

For Y _= b,

For Y > b

¢I(X,y,z)

 v(t)

- _4 + G5

_iiI(x,y,z)

2v(t) b/2

_II(X,Y, z )

b/2

: GI - G5 + G4 + G5

= G 2 - G3 + G4

= GI + G[_O - G 3 + GII + G 5

(23)

(24)

(2_)

(26)

(27)

(28)

(29)

(30)



Case IV:

Case V:

_v(x,y,zl

Case VI :

_m(x,y,z)
: o (31)

- GI + GI0 - G 3 + GII + G5 - G6 - GI2 + G8 - GI3 - GI4

_VI(X,Y, z)

(32)

= GI + GI0 - G 3 + GII - 2G 4

Case VII :

For y < b _ _VII (x'y'z)

_ ¢viI(X,y,_lh
For y > _,

2

Case VIII :

(33)

 v(t)

- GI - G6 - G3 + G8 + G9

- G2 - G 7 - G 3 + G8 - G9

(34)

_VlII(X'Y' z)
: al - o3 - G_ (35)

DISCUSSION

The formulas presented in the previous section enable the direct

evaluation of the perturbation velocity potential in the vicinity of

rectangular wings with symmetrical biconvex airfoil sections and the

corresponding perturbation velocity potential for delta and modified-

delta wings with wedge airfoil sections. For the sweptback-wing cases

with airfoil sections of arbitrary thickness distribution, the well-

known superposition procedure can be employed by using the given formulas

with appropriate values for the parameters substituted therein. A graph-

ical presentation of the mechanics involved in superposing the basic

solution is given in figure 6. Note that each component part may be
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directly evaluated from the expressions pre_ented in equations (6) and
(19) to (27) and those given in appendix A.

In connection with the formulas applicable for the sweptback wings,
it should be pointed out that for the speci_l conditions of 8 cot A = 1
(sonic leading edge) and _ tan 5 = _ (unswept trailing edge) the func-
tions of appendix A are simplified to consilerable extent by conventional
procedures. The following relationships should be used in the event
certain terms (for convenience denoted by N) take on imaginary values:

For INI< i,

and, for IN I > I,

cosh-iN = i cOs-LN[

Jcos-iN = -i cosh-l_

(56)

cosh-lN = -i cos-IN[

cos-IN = i cosh-lN J

(}7)

Care should be exercised in extracting only positive roots from radical

terms. To minimize the possibility of errcrs in the final formulas, all

derivations have been checked analytically by independent means and also

checked numerically by graphical integraticn procedures.

The formulas presented for the perturbation velocity potential may

be differentiated by either numerical or analytical procedures to obtain

the various velocity components which in turn will enable the direct

evaluation of flow-field effects on neighbcring airplane or missile

components. An approach that has proved tc be very efficient consists

of computing the potential function and its variation along a given

direction and then measuring the slopes either graphically or numerically

to obtain the desired velocity component.

CONCLUDING REMARES

Expressions based on linearized supersonic-flow theory are derived

for the perturbation velocity potential in space due to wing thickness

for rectangular wings with biconvex airfoil sections and for arrowhead,

delta, and quadrilateral wings with wedge-type airfoil sections. The

complete range of supersonic speed is considered subject to a minor
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aspect-ratiomMach numberrestriction for the rectangular plan fom and
to the condition that the trailing edge is supersonic for the sweptback
wings. The formulas presented can be utilized in determining the induced-
flow characteristics at any point in the field and are readily adaptable
for either numerical computation or analytical determination of any
velocity componentsdesired.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Field, Va., December24, 1958.
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APPENDIXA

MATHEMATICALCONDITIONSANDFUNCTIONSPERTINENTTOEVALUATION

OFVELOCITYPOTENTIALFORSWEP,TBACK-WINGCASES

In order to determine the specific sweptback-wing case applicable
for a given point (x,y,z), the following mathematical conditions may be
utilized:

Case I :

Ba<0< _b

Bc and qd are im_,inary

Case II :

Case III:

Case IV:

Case V:

-b<qc<O
2

qd <b-
2

-_<qc<O
2

qd >_
2

0 < Be <_< q{L
2

'][I

0 < me < qd < -"
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Case VI:

Case VII:

Case VIII:

Case IX :

b
_a < - --

2

%>k
2

0 < Nf < _]e < b_ < _d
2

0 < 1if < _]e < _]d < b_
2

o<_f<%< b-
2

Re and _d are imaginary

The various _ functions referred to in the preceding conditions are

defined by equations (9) to (14) in the text.

The formulas for the perturbation velocity potential _ are pre-

sented for the various cases in equations (19) to (27) in the text.

The functions F 1 to F 6 are used therein for purposes of simplifica-

tion and are defined as follows in terms of the nondimensional space

coordinates x, y, and z and the plan-form--Mach number parameters

and m (where _ = A_ and m = _ cot A):

F1 -

_(4m_ + _)2 + A--2{2(I_ m2)

tan-I m_16_2 _ _2(_2 + _2) +

_(_2 + {2) + kinK._

_{ - (_)
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F 2 = -
4m(_ - l) + _(_ - 4m)

cos-i
4(i - 1)(_ - 4m) +'__

tan -1 m_V16(_ _ 1)2 _ _2(_2 + _2)

(_ - _)(/. :3) + ,_(_ - _)

+ _ t _ 1 mE_ - l) 2 - _(_ + E2) _

(_ - 4_)(_2 + ;2) _ _(_ _ _)

_m(_- i) - 2(_- _) co_-i _(_- i)(7 - _m) -A-2=2

IZ2(_ _ - 16)+ 8kin- _2 A-V[4m(_- i)- _(_- 4m)] _ - E2[m2(_ - 16)+ _m_m- _]

(A2)

F_ = - --

_- m2 m#(4_ _ _)2 + _2_2(i _ m2)

. EV(4_- _)2- A---2m2[(1, _)2 + E2t
+ _ tan -_

4m(£ - i) - _(_ - 4m) cos_ I (7[ - 4m)(4mR - X) + _2m2(1 - _)

tan -I
Ei(4m_ - _)2 A-_m2[(l- _)2 + E2]

(_ - 4m)[_ 2 - _(1 - _)] + 4m(R - 1)(l - _)

(AS)

F4=
4m(_ - i) + _(_ - 4m) cos_ 1

_m2(A 2 - 16) + 8_ - A-2

(_ - 4m)(4_ - _) + _2m2(1 + y)

2 tan -I

(_ - 4m)[g 2 + _(1 + _ + 4m(_ - l)(l + _)

cosh-i
4m_ - _ + ]_[m2(l + _)

mV(4m_ + _)2 + i2_2(1 _ m2)

E tan -I E{4_- _[)2 ][2m2[(i + _)2 + E2]

_[_2, 2(z+ 2)] + _m_(L+ 2)

(A4)

/

(AS)

(A6)
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APPENDIX B

MATHEMATICAL CONDITIONS AND FUNCTIONS PERTINENT

TO EVALUATION OF VELOCITY POTENTIAL FOR

REC TANGUI_-WING CASES

In order to determine the specific rectangular-wing case applicable

for a given point (x,y,z)_ the following mathematical conditions may be

utilized:

Case I: x<c+_z

b < _a < % <k

Case II:

For x < c + _z,

For x > c + _z_

-k<_a<_<qb2

_ b_< _a<b_< _c
2 2

Case III:

For x < c + _z,

For x > c + 8z,

b

%>k
2

Case IV:

x>c+_z

b<_a<%<b
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Case V:

b
_c < - -

2

qd >b
2

Case Vl:

Na < b b-_< nc < qd<_ < %

Case VII:

_ b_< qa < qc < ]:< _d
2 _

Case VIII:

_b_< _a < qe < _d<t_< _b
2 2

The various q functions referred to in the preceding conditions are

defined by equations (15) to (]_8) in the text.

The formulas for the perturbation v_locity potential _ are pre-

sented for the various cases in equation3 (28) to (35) in the text. The

functions G1 to G14 are used therein for purposes of simplification

and are defined as follows in terms of t le nondimensional space coordi-

nates x_ _ and z and the aspect-rat[o--Mach number parameter

(where _ = A_):

al= (1- 2_)_(1- _)cosh-1 . 2_

[ _ 9-1)2 +_ 2

_os-__(_ _A_)- _-_(_ +_) _

! cos-iz_(_ - l)2 - 4_2 + A_2_ (B1)
i 4_2 _ _2_2 J



G2 : (z - z_) {(z - f)oosh-I

22
+

h

x_-oos-i_2(_ _ 1)2_ 4_2+ _2_2_
X 4_2_ _2_2 J

17

(B2)

G3 - _ - if I(_ _ 1)2? 4£2 _ A-2 + _2] +

4_ 2 - A-2_2

2_
sin-i

_(9- ]_) (BS)

G4 = _2
X2_2

L 2_
(B4)

G5 : (1 - 2x) 2:_-_2
A

(B5)

G6 = (1 - 22) f(1

_)cosh -I
2(_ - 1)

_i(_ _ 1) 2 + g2

A

I4(2 - 1) 2 _2_2_ _- 1)2 + _2]

l

cos -I _2(f _ Z)2 _ 4._(,_ -. 1)2 + _2_2_

4(_ - i)2 - _2_ 2 J
(B6)
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-------- COs-i

_(_-i) 2__2

QS=_--L! 4(__'i) 22 - _- :_ _ 1)2
+

2_ -- sin-i

(_8)

Olo = (i - 2_)I(i + 9)cosh-i 2i

_V(_+i) 2 _2

+ i) + i2]

=loo=-i_(-92LL_:_+ i) = - _ + _=2}

(_9)

(_io]



19

GII _y+ i_4_2 _2_2 - + l)2+ _2]
4_ 2 _ A-2_2

+ sin-i

2_

_(9 + 1)
(Bll)

+ _)_o_n-1 2(2 - l)

_-_/(2 + 1) 2 + _2

cos-i
2

_2_(2- 1)2 - A-_9{2]_ (_ + i)2_(£_ 1) 2

-- oo_-1 P-_(Y + 1)2 - 4(2 - 1)2

4(_ - i) 2 - _2

+

(m2)

G13- _ + 1_/:(2- 1)2 _ _.[(;_ + 1)2 + E2] +
2

4(_ - 1) 2 - _2 sin -1 A(y + 1)

2A

14(2 - ]_)2 _ _2

(m3)

GI_ = (1 - 2_)(_ - 1)2=
A

(Bi4)
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